1979: 自然数的拆分
Memory Limit:128 MB
Time Limit:1.000 S
Judge Style:Normal Judger
Creator:
Submit:23
Solved:7
Description
【问题描述】
任何一个大于1的自然数n,总可以拆分成若干个小于n的自然数之和。
当n=7共14种拆分方法:
7=1+1+1+1+1+1+1
7=1+1+1+1+1+2
7=1+1+1+1+3
7=1+1+1+2+2
7=1+1+1+4
7=1+1+2+3
7=1+1+5
7=1+2+2+2
7=1+2+4
7=1+3+3
7=1+6
7=2+2+3
7=2+5
7=3+4
total=14
【输入格式】
正整数n,1<n<40 。
【输出格式】
每行一种拆分,拆分输出格式参考样例输出;
最后一行输出:total=xx,xx表示拆分方案总数。
【输入样例】
7
【输出样例】
7=1+1+1+1+1+1+1
7=1+1+1+1+1+2
7=1+1+1+1+3
7=1+1+1+2+2
7=1+1+1+4
7=1+1+2+3
7=1+1+5
7=1+2+2+2
7=1+2+4
7=1+3+3
7=1+6
7=2+2+3
7=2+5
7=3+4
total=14
Input
正整数n,1<n<40 。
Output
每行一种拆分,拆分输出格式参考样例输出;
最后一行输出:total=xx,xx表示拆分方案总数。
Sample Input Copy
7
Sample Output Copy
7=1+1+1+1+1+1+1
7=1+1+1+1+1+2
7=1+1+1+1+3
7=1+1+1+2+2
7=1+1+1+4
7=1+1+2+3
7=1+1+5
7=1+2+2+2
7=1+2+4
7=1+3+3
7=1+6
7=2+2+3
7=2+5
7=3+4
total=14